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Abstract—Due to the exploding costs of chronic diseases
stemming from physical inactivity, wearable sensor systems to
enable remote, continuous monitoring of individuals has increased
in popularity. Many research and commercial systems exist in
order to track the activity levels of users from general daily
motion to detailed movements. This work examines this problem
from the space of smartwatches, using the Samsung Galaxy
Gear, a commercial device containing an accelerometer and a
gyroscope, to be used in recognizing physical activity. This work
also shows the sensors and features necessary to enable such
smartwatches to accurately count, in real-time, the repetitions of
free-weight and body-weight exercises. The goal of this work is
to try and select only the best single axis for each activity by
extracting only the most informative activity-specific features, in
order to minimize computational load and power consumption
in repetition counting. The five activities are incorporated in a
workout routine, and knowing this information, a random forest
classifier is built with average area under the curve (AUC) of .974,
with average accuracy of 93%, in cross validation to identify each
repetition of a given exercise using all available sensors and AUC
of .950 with accuracy of 89.9% using the single best axis for
each activity alone. Adding a gyroscope with the accelerometer
increased the average AUC from .968 to .974, increasing the
accuracy of specific movements as much as 2%. Results show that,
while a combination of accelerometer and gyroscope provide the
strongest classification results, often times features extracted from
a single, best axis are enough to accurately identify movements
for a personal training routine, where that axis is often, but not
always, an accelerometer axis.

I. INTRODUCTION

Body-wearable sensors for personal health monitoring have
become an important tool in solving health problems. Chronic
illness, which affects 133 million Americans [1] resulting in a
majority of the health care costs [2], often stems from physical
inactivity [3]. Indeed, cardiovascular disease and diabetes, the
two most common chronic diseases resulting from inactivity
are the source of an increasing economic burden on the United
States. For instance, cardiovascular disease is projected to cost
up to $818 billion in direct medical costs and $276 billion in
indirect (loss of productivity) costs by 2030 [4], while diabetes,
estimated at $245 billion in 2012, will increase due to the
estimated prevalence doubling by 2050 [5]. As a result, there
is a dire need of a solution that addresses this problem, and
wireless health systems, used to monitor the physical activity
of wearers [6], [7], are now looking to wrist-worn platforms

for tracking various forms of exercises. Aerobic and resistance
training exercises have both been shown to help prevent and
address these diseases [8]. In some cases, resistance training
alone can be effective [9].

Wearable sensor systems provide a large number of mon-
itoring applications for energy expenditure. They can range
from using only a single sensor [10] for general energy to
networks of sensors for detailed applications, like swimming
actions [11]. Monitoring energy expenditure while performing
general daily activity [12], [13] is the most common such
application. Calculating activity intensity, and approximation
to metabolic equivalent of tasks allows for estimation of actual
energy expenditure [14], [15]. A review of such wearable
accelerometers and activity energy expenditures shows popu-
larity of such systems in promoting physical activity [16]–[18].
For each existing platform, many application specific solutions
exist as well, from design of gameplay [19], [20] to light-to-
moderate physical activity monitoring [21].

With the popularity of Fitbit, and the emergence of the
smartwatch platform from companies like Sony, LG, and
Samsung, wrist-worn sensor devices for exercise monitoring
will become an increasingly important tool in personal health
monitoring. In particular, exercise routines and repetitions can
be counted in order to track a workout routine as well as
determine the energy expenditure of individual movements.
Indeed, mobile fitness coaches [22] for counting repetitions of
exercises [23], [24] have become a growing topic of interest,
including the selection of sensors and locations for tracking
activities [25]. Mobile fitness coaching has covered the range
of topics from quality of performing such sports actions [26]
[27] to detection of the specific sports activity [28].

This paper introduces a framework for platform creation
(e.g., accelerometer only system vs. accelerometer and gyro-
scope) and machine learning of some activities, which can
be especially useful in the emerging market of smartwatches.
By identifying the most informative activity-specific features,
a system can be optimized to reduce the computational load
as well as the power consumption through appropriate sensor
selection. In particular, the decision to add an accelerometer
and a gyroscope, such as the Samsung Galaxy Gear [29], or
accelerometer only in Fitbit and Sony platforms [30] gives
rise to the questions of what sensory devices are necessary in
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a single smartwatch platform to make it a successful exercise
tracking device for software platforms, such as those available
on the market by companies such as Focus [31] (who provided
the desired workout routine for this work) as well as similar
platforms in research fields [32]. This work will attempt to
analyze the performance difference for five workout exercises
using a Samsung Galaxy Gear smartwatch platform in order to
count repetitions for use in a personal gym coach application,
by leveraging the contextual information of a given workout
routine to classify movements and use said classification as a
repetition counter. It will analyze the difference between the
accelerometer, the gyroscope, and the combination there of,
as well as optimization techniques to reduce the computations
necessary to accurately count the repetitions of such exercises
as a guideline to future applications using wrist-worn devices.

II. RELATED WORKS

While exercise routines and detection are a popular field of
research, ranging from quality to energy expenditure, several
related works aim to detect particular exercises and count
their repetitions. In [32], a mobile phone platform is used
to aggregate data from two custom accelerometer devices
operating at 100 Hz. These sensors, on the arm and the leg,
as well as a heart rate sensor on the chest, show the ability
to count repetitions of exercises and calories burned from
the increased heart rate through the use of a six-dimensional
Gaussian distribution for each movement class. They show an
accurate system from 71% to 100% for 16 various activities
using said system and counting the repetitions of an activity
through a peak-detection method, which may or may not be
a robust method when used across different populations. This
work will attempt to approach a similar problem from that of
[32] by using the classifiers to identify not the general motion
patterns but instead use the classification to accurately count
the motions detected. Further, this work will identify the key
features in classifying free-weight and body-weight exercises.

In [33], a smartphone is attached to the users arm for
unconstrained exercises (those capable of being performed in
any environment) and placed on the weights of a machine in a
constrained (gym) environment. They use a method based upon
dynamic time warping to identify the activity, and possible
repetitions, then count off of this information. In particular,
they indicate that the DTW is too time-consuming to be
performed real-time, and thus, pre-filter data by using peaks of
similar height and a threshold window to only consider given
acceleration windows. The similarity method appears robust
in their results resulting in perfect precision and high recall
(above 93% in all cases) in their unconstrained environment.
This paper, similarly, deals with an unconstrained environment
and movements monitored on the wrist (5 in their case)
and attempts to find an even less-computationally intensive
procedure as DTW to classify its movements. Further, no
gyroscope exists in their platform, but will be analyzed here
similarly to [25]. This work attempts to classify each individual
movement repetition instead of the entire data set, similar to
what was achieved in [33].

In [23], two different classifiers are used in determining a
workout exercise then counting the repetitions of said exercise.
Using a single accelerometer on the back of the hand and one
on the hip, they are able to accurately identify most work out

Fig. 1. Device worn on wrist for exercise with dumbbell

TABLE I. MOVEMENTS SELECTED AND WHETHER THEY USE A

DUMBBELL OR NOT

Movement Uses Dumbbell
Bicep Curls yes
Crunches no
Jumping Jacks no
Push Ups no
Shoulder Lateral Raises yes

routines with most exercise accuracies in the 90−100% range
using a Naive Bayes classifier or a Hidden Markov Model.
Further, after identifying the movement, they use either a peak
detection algorithm, or the state transitions of their HMM in or-
der to count the actual repetitions and have an error rate under
10% for most exercises and under 20% for all. They test their
system in two different cross-validation schemes, with user-
specific models at different weights and in a leave-one-subject-
out cross validation for robustness, showing similar results.
This work attempts to build upon results of [23], by assuming
first that the motion may be identified correctly, either through
their method, or through knowledge of the workout routine
to identify the activity, and use a classifier to improve upon
the counting error rates. Further, they eliminate the gyroscope,
stating cost issues. This work will use a gyroscope to identify
accuracies so that, if cost is not a concern, results can be
evaluated to determine if it is necessary to include all available
sensors in a smartwatch platform. Finally, instead of using
the entire data set to separate the differences between motion
classes, this work looks at individual repetitions and attempts
to classify each.

III. METHODS

TABLE II. LIST OF CALCULATED FEATURES PER AXIS

Feature Count
Amplitude 6
Median 6
Mean 6
Maximum 6
Minimum 6
Peak-to-Peak 6
Variance 6
St. Dev. 6
Root Mean Square (RMS) 6
Skewness 6
Derivative Mean 6
Derivative St. Dev. 6
Derivative Variance 6
Derivative RMS 6
Axis Correlations 15

Many workout routines start and end the same way with
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Fig. 2. Feature Ranking and Classification Method for Identifying Repetitions

a defined set of exercises. This work aims to leverage this
information to build classification and repetition counting into
a single algorithm to quantify these exercises. This effort will
focus on building binary classifiers for each specific repetition
of each movement, classifying individual actions instead of the
repetitive pattern of the general exercise. Using a smartwatch
platform that consists of an accelerometer and a gyroscope
[29] operating at 50 Hz, shown heuristically to be +/- 2g and
+/- 200 degrees per second respectively, worn on the left wrist.
Fig. 1 shows a user wearing the watch during a workout routine
while wearing the watch. A classification algorithm is run to
determine accurately the workout routine movements listed in
Table I. When looking at the watch face (e.g., when looking at
the watch to read the current time), the x-axis points forward
to the top of the watch, the y-axis points to the right, and the
z-axis faces straight up from the face of the watch. While some
of the routines could be done with or without dumbbells, the
exercises selected were suggested by Focus [31] as a core set
of initial exercises, using a 10 pound dumbbell. The end goal
of the training and testing sets is to then develop an algorithm
that is capable of recognizing these activities while running on
the same watch.

A. Data Set

Data was collected on 12 participants, male and female,
ranging from age 23 to age 38 and thus a lower weight
was selected to account for all users. Once the data was
collected, each was annotated manually for the start and end
of each repetition. Each user was asked to perform each given
activity ten times. The data was collected with the watch
on the left hand (although the algorithms can be adapted
to either hand). Finally the users were also asked to simply
perform no movement, random movement, and various arm
positions in order to develop a no-movement class for an
application. Random windows from this signal were selected
for the training sets.

B. Training

1) Preprocessing: Once the data was collected, the appro-
priate window size for each movement needs to be determined.
This was done by calculating the average window size. For
each move m ∈ M , where M is the set of all movements,

each person p ∈ P , where P is the set of all people, has a
move size determined by:

wmp =
1

n

n∑

i=1

si (1)

where si is each individual move sample defined by the
annotated start and end points. This average is then calculated
and the movement average is determined by:

wm =
1

|P |
|P |∑

j=1

wmp (2)

This average window size is then used to alter the end point
of each movement annotation to give the general movement
size of each exercise. Since the workout routine is known, the
context can be leveraged to build binary classifiers. As a user
goes through a weight training program, the sets are defined.
As a result, every model can be built to identify if a given
movement window is a push up or is not a push up. Using
this context information a series of features are extracted for
each move.

2) Feature Extraction: The total list of features shown in
Table II are extracted for each training sample. These features
listed are calculated on each axis and the total number of
the features is shown in the 2nd column. Thus, 6 features
equates to the mean being calculated on each axis of gyroscope
followed by each axis of the accelerometer. Once this is
extracted for each sample for each person and each move,
the number of features used in the testing must be reduced.
Clearly the 99 features calculated would over-fit the data. Also,
for computational performance it would be better to only need
to calculate a subset of the features. Four testing configurations
were created to evaluate the performance of the accelerometer,
the gyroscope and the best axis. These configurations create
4 training sets per activity. The first is using features from
only the accelerometer, the second only the gyroscope, the
third is the combination of features from accelerometer and
gyroscope, and finally the fourth is identifying the single best
axis from the third set, and using only those features. Since
there are significantly larger quantity of negative examples
than positive for each movement, the negative samples are
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TABLE III. AVERAGE ACCURACY AND AREA UNDER THE (ROC) CURVE (AUC) OF EACH MOVEMENT IN CROSS-VALIDATION FOR EACH OF THE

TEST SETTINGS

Movement Accel. Only Acc, AUC Gyro. Only Acc, AUC Accel+Gyro Acc, AUC Best Single Axis Acc, AUC

Bicep Curls 92%, 0.97 87%, 0.91 92%, 0.98 87%, 0.94
Crunches 98%, 0.99 86%, 0.92 98%, 0.99 93%, 0.94
Jumping Jacks 88%, 0.94 77%, 0.86 89%, 0.95 84%, 0.94
Push Ups 96%, 0.99 87%, 0.93 96%, 0.99 95%, 0.99
Shoulder Lateral Raises 88%, 0.95 90%, 0.94 90%, 0.96 90%, 0.94

TABLE IV. SELECTED FEATURES OF EACH BEST AXIS FOR EACH MOVEMENT

Movement Axis Features
Bicep Curls az minimum, median, mean, amplitude, maximum, root mean square
Crunches ay median, mean, maximum, minimum, variance, root mean square
Jumping Jacks ax minimum, root mean square, median, st. dev., mean, peak-to-peak dist.
Push Ups az median, mean, maximum, minimum, variance, root mean square
Shoulder Lateral Raises gy root mean square, st. dev., minimum, peak-to-peak dist., variance, maximum

randomly removed to balance the training set size. Finally,
then, the training and testing sets are created to be used with
feature ranking and selection, then classification. The training
and classification flow is shown in Fig. 2. The features, once
extracted, are normalized. In order to make the correlation
features more informative, the signals are normalized for the
extraction of those features.

C. Testing

1) Cross-Validation: In order to test the model, the Weka
[34] platform was used in order to feature rank, feature select,
and cross-validate the results. The top six features were used
in order to ensure that the accuracy information will not be
as a result of over-fitting the training data. Six features were
chosen as the minimal subset that achieves what was deemed
acceptable performance. Using a correlation ranker, the top six
features were used in each set and the results were past through
a 10-fold cross validation to test robustness to variability.
Several classification schemes can be tested in Weka, and
in this case random forests, decision trees, SVM, and Naive
Bayes classifiers were compared.

2) Testing in a Real Setting: For the test data, a sliding
window of points, equal to the average window size calculated
for each movement is chosen. Given a time series signal T =
t0, t1, ... where each index is a sample at 50Hz, a subsequence
ti is then selected as follows:

ti = (Ti, Ti+w) (3)

where w is the indicated move window as designated from the
training set, assuming enough points remain in the time-series.
This subsequence is then used to extract features, resulting in
a feature test-vector, as in:

F (ti) = {fi|0 < i ≤MAXf , eachfi ∈ Fs} (4)

where MAXf indicates the largest number of features col-
lected, then each fi is from the sorted order of features as
ranked by the feature ranking algorithm, denoted Fs, such
that f0 is the highest ranked feature, f1 the next and so
on. A sliding window is then shifted over the testing data
testing each activity. Every time an activity is classified as
an individual sample, then it is counted as a repetition, the
window cleared and the time-series sub-sequence jumps past

this point and continues (in order to avoid re-classifying the
same repetition when the window is slid only one point).
Otherwise, the overlap for the sliding window is every point.
For every yes classification result a counter is incremented
to count repetitions. Thus, high classification accuracy of
individual movement repetitions will equate with low error
rate in counting.

IV. RESULTS

3) Accuracy and AUC: In order to evaluate the results the
correlation tool to rank the features in the Weka environment
was used, followed by a random forest classifier due to
its highest classification accuracy. The top six features were
picked for each movement. As seen in Table III, all testing
configurations provide strong results. This table shows the
classification accuracy as well as the area under the curve
(AUC) of the Receiver Operating Characteristics (ROC) of
each movement in each of the four test settings. The gyroscope
seems to add some strength in a few of the movements and
thus, for a system that wants accurate counting, is necessary in
order to have the highest classification accuracy. The jumping
jacks, in particular, have curves that occasionally saturate
the 2g accelerometer, thus, most likely exhibits the lowest
classification accuracy. Thus, by using context information to
create binary classifiers, a high classification rate for each
example movement is found, thus indicating a low error rate on
counting for each of these movements in a trainer application.

4) Selecting the Best Axis: In order to reduce the compu-
tational load, a trade off between the best single axis and the
full data set can be compared. Two examples of movements
and their ROC curves are shown in Fig. 3a and Fig. 3b,
showing a combination of accelerometer only, gyroscope only,
accelerometer and gyroscope, as well as the best selected
individual axis. Note, in these examples, a combination of
accelerometer and gyroscope provide the strongest result. The
best individual axis and their features for each movement are
listed in Table IV, listed in order of strongest first. While the
features are similar, a binary classifier allows for the selection
of different features for each movement. Thus, contextual
information can optimize a system to use the ideal features
and reduce computational load. Further, by only attributing
a specific axis, less data can be computed or transmitted, and
further, uniaxial sensors can be chosen in place of triaxial if so
desired. For certain movements, this procedure yields accurate
results that allow for the reduction of the computational load.
Fig. 4 shows one such movement where the accelerometer
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Fig. 3. ROC Curves for (a) Bicep Curls and (b) Jumping Jacks showing Accelerometer Only, Gyroscope Only, Accelerometer + Gyroscope, and Best Axis
Classification Methods

only and the accelerometer plus gyroscope configurations use
the same best features as the single individual axis of the
accelerometer. This allows for the same ROC curve and same
AUC as a result.

V. FUTURE WORK

The system shown here provides ample opportunity to
further test and evaluate workout routines. Further feature
extraction techniques can be used to determine stronger best-
axis information to reduce the computational load, or to
ensure a minimal subset of considered sensor data, as well
as applying contextual information or calibration steps to
create a user-centric platform. Once this is developed, further
detailed motions can be analyzed in a similar manner, such
as those needed for rehabilitative exercises. As the workout
routines are increased this may be more important and so
more exercises should be considered, as well as the real-time
responsiveness and user-experience considered. Further, the
algorithm itself should be re-implemented on to the watch and
a user-experience trial performed to see if users appreciate
the accuracy and speed in which the repetitions are counted,
and the actual delay values calculated. Such systems should
also be tested for robustness in terms of varying weights,
in particular considering the trade-offs between movement-
specific models and weight-class specific models and how this
contextual information may be passed into the system. Finally,
the addition and fusion of other sensors, such as heart rate, may
provide valuable differentiating characteristics and should be
further investigated in the realm of exercise-sport applications.

VI. CONCLUSION

Smartwatches show a new realm of activity sensors for
personal health monitoring. Some have accelerometers while
others also include a gyroscope. As wrist-worn wearables
increase in popularity, the investigation of the sensor platforms
needed and computational considerations for the response time
of such counting algorithms must be considered, ranging in
applications from general monitoring to real-time exercise

repetition. This work presents the feature extraction and se-
lection necessary to not only identify but at the same time
count repetitions of free-weight and body-weight exercises
by leveraging the context of the workout routine in order to
develop strong classifiers. While the accelerometer alone is
fairly consistent in classifying the individual repetitions of
the motions, the gyroscope does improve the classification
accuracy by having an average area under the curve of .974, up
from .968 using only the accelerometer. Adding a gyroscope
with the accelerometer increased the average AUC from .968
to .974, increasing the accuracy of specific movements as much
as 2%. The best single axis method achieves an AUC of .95
showing that a reduced method can provide the necessary ac-
curacy to accurately count repetitions in a lower computational
power setting.

Fig. 4. ROC Curves for push ups. Note that three configurations share the
same curve
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